优秀的手机游戏下载!
首页 递归函数的时间复杂度应该怎么算

递归函数的时间复杂度应该怎么算

发布时间:2024-10-13 11:57:25 编辑:打包星星 浏览:601

求解算法的时间复杂度的具体步骤是:

⑴ 找出算法中的基本语句;

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

⑵ 计算基本语句的执行次数的数量级;

只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

⑶ 用大Ο记号表示算法的时间性能。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for (i=1i&lt=ni++)

x++

for (i=1i&lt=ni++)

for (j=1j&lt=nj++)

x++

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

常见的算法时间复杂度由小到大依次为:

Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)

Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。

这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

参考博客地址:

n个碟子汉诺塔递归问题的时间复杂度是?

每次递归内部计算时间是常数,故O(n)。

用递归方法计算阶乘,函数表达式为f(n)=1 若n=0 f(n)=n*f(n-1),若n&gt0,如果n=0,就调用1次阶乘函数,如果n=1,就调用2次阶乘函数,如果n=2,就调用3次阶乘函数,如果n=3,就调用4次阶乘函数。

递归函数的时间复杂度应该怎么算

扩展资料:

注意事项:

利用递归树方法求算法复杂度,其实是提供了一个好的猜测,简单而直观。在递归树中每一个结点表示一个单一问题的代价,子问题对应某次递归函数调用,将树中每层中的代价求和,得到每层代价,然后将所有层的代价求和,得到所有层次的递归调用总代价。

递归树最适合用来生成好的猜测,然后可用代入法来验证猜测是否正确。当使用递归树来生成好的猜测时,常常要忍受一点儿不精确,因为关注的是如何寻找解的一个上界。

参考资料来源:百度百科-递归算法

参考资料来源:百度百科-阶乘

参考资料来源:百度百科-时间复杂度

汉诺塔问题的时间复杂度为O(2^n)。

时间复杂度的计算:用递归来解决汉诺塔问题是非常方便的选择。

设盘子个数为n时,需要T(n)步,把A柱子n-1个盘子移到B柱子,需要T(n-1)步,A柱子最后一个盘子移到C柱子一步,B柱子上n-1个盘子移到C柱子上T(n-1)步。

得递推公式T(n)=2T(n-1)+1。

所以,汉诺塔问题的时间复杂度为O(2^n)。

扩展资料

递归算法要求

递归算法所体现的“重复”一般有三个要求:

1、每次调用在规模上都有所缩小(通常是减半)。

2、相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入)。

3、在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。

以上就是关于递归函数的时间复杂度应该怎么算全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

更多相关资讯

求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数…
查看详情
求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数…
查看详情
求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数…
查看详情
相关资讯
猜你喜欢